Matthew Eshleman
TDD and embedded software = .ovemountainsoftware.com

http://covemountainsoftware.com

Background - Matthew Eshleman

15+ years of embedded software development,
architecture, management, and project planning

Delivered 30+ products with many more derivative
orojects. Millions of people have used my code. No one
nas threatened me yet (except one guy in marketing.)

Recently: leading a safety and quality focused firmware
oroject using TDD methodologies.

- Learn more: http://covemountainsoftware.com/consulting

http://covemountainsoftware.com/consulting

Background - inspiration

» FIrst conceptual exposure to 1DD was about 10 years
ago at a conference. The speaker stated: “Test driven
development gives you COURAGE.” That comment went

straight to my core. | got it.

_ast year: read the book “Test Driven Development for
—mbedded C” by James Grenning, providing further
motivation.

Recently. .. splitsecnd (%)

- Leading firmware development
for splitsecnd’s crash detection
and emergency response
device.

- Test Driven Development - a
must for a device intended to
help people In emergency
situations.

- Today: overview of TDD and
lessons learned.

What is TDD? (Test Driven Development)

- Write tests before writing production/target code!

- Elecia and Grenning in http://embedded.tm/
episodes/109:

+ “Transform your debug time into TDD time”

-+ Grenning: TDD vs “Debug Later
Programming” (DLP)

http://embedded.fm/episodes/109:

Senefits of TDD

Functionality is tested without hardware
- Test code without backends/servers

Error cases that are difficult or nearly impossible to test in the real
world can be tested in the test project/framework.

Example: DNS failure. Happens, but...
- The tests act as a supplement or even replace specifications
- Tests supplement or replace code documentation

- Courage to refactor, rework, and rapidly iterate.

Test Driven Development work flow

- Write a test - It will not compille, this is clearly a “fall”.
Fix headers. Add some shell code. Build, compile, link.
Run Tests. New tests should fail.

Develop code until it passes the test.
Refactor.
-+ One Behavior At a time.

Keep lests fast. Encourages their use.

1DD needs a good Test Framework

- Many different Frameworks

- CppUTest (C++)

- Today'’s focus, very C and C++ friendly, useful for embedded
- Unity (C code only)

- Google test (C++)

- See more: http://accu.org/index.php/journals/1326

http://accu.org/index.php/journals/1326

Platform, cross complle, etc

- Test projects
- Generally run on a PC
- Drawback: Assembly optimized code.
- Consider your test environment.
- Example, 32bit vs 64bit host OS and compiler, etc.
- Very likely need multiple projects due to C/C++ linker limitations
- Speed: keep the tests as fast as possible.

- Behavioral Driven versus “unit test” driven

—xample highlevel project/build setup

Example Target

Firmware Architecture

Firmware Under Test
App Layer

Service Layer
HW Layer

Example Build or

Project Setup

Projects (compiled outputs)

App Test Project
Links to target App Layer code
Service Layer mock() code
App Layer Test code
Target: PC test app

Service Layer Test Project
Links to Service Layer code
HW Layer mock() code
Service Layer Test code
Target: PC test app

Firmware project
Target: cross-compiled for actual
target

Mocks!

A “mock” module provides the same APl or interface as
real code, enabling the test environment to setup,
control, and inspect the mock while testing code that
requires the module being mocked.

In CppUTest a mock’ed function might look like this:

bool BatteryIsOk () ({
mock () .actualCall ("BatteryIsOk”) ;
return (bool) mock () .returnIntValueOrDefault((int) true);

}

What does a test look like?

TEST (CrashDetectionTests, SampleCrashDataInducesCrashEvent) {

// <<SNIP>> crash callback setup
OpenTestFile (“data/crash accel data.txt");

// Inject Data into mock 1 sample at a time

AccelData t *sample;

while ((sample = GetNextSample()) '= nullptr) ({
CrashDetectionInjectSample (sample) ;

// Speed up test by exiting on Crash Callback
i1f (bCallBackCalled) {

break;
}
}

CloseTestFile () ;

//Check to make sure the crash detected Callback was
CHECK (bCallBackCalled) ;

}

called

Another example test showing mock() usage

TEST (AppButtonTests, EightSecondButtonPressAndHoldResetsMicrocontroller) {

// <<SNIP>> remove minor setup code

//we are about to send the 8 second button hold event.
//we expect a reset to be requested

mock () .expectOneCall ("NVIC SystemReset") ;
mock () .ignoreOtherCalls () ;

//send the 8 second hold event
mock btn mgr::GetEightSecHoldHandler () (BTNMGR HOLD 8 SECS) ;
PROCESS_APP_QUEUE () ;

mock () .checkExpectations () ;

| essons [Learned

| essons: Don’t be so strict!

- Don’t be afraid to punch through and reveal “internals”
when necessary.

- Example: Test an internal statemachine that would
typically be static/private code.

L essons Learned: Threads

- Don’t test threads, test the code that runs in a thread.
- Why?

- Threading behavior is difficult or impossible to test
cross platform

- Threads are typically all about blocking: blocking on
semaphores, queues, timers, etc. Blocking slows
down the test projects

| esson: Threads continued

Module Under Test ~____ Skip TDD on this code
Thread Init/Startup 4"

Code that

does stuff

S = g
.

—Xxample thread + queue + statemachine

void AppTask (void*) {
AppStatemachine* statemachine = new AppStatemachine();
statemachine->Init () ;
while (1) {
AppProcessOneQueueltem(statemachine, true);

} Not ested

}

bool AppProcessOneQueueltem (AppStatemachine* sm, bool wait) ({
AppQueueltem msg;
if (QueueRx(m g, &msg, ((wait == false) ? 0 : MAX))) {
sm—>ProcessEvent (msqg) ;
return true;

J

return false;

| Accessible to TDD environment

#define PROCESS APP QUEUE () do { while (AppProcessOneQueueltem(m under test, false)) {} } while (0)

Example Macro in TDD projects’

| essons: Time

“Time” and embedded often
go hand and hand.

For Today:

Timers: periodic, one-shot,
etc

Other:

Current Time (timestamps,
calendars, etc)

“Real time”
responsiveness

Time: RTOS Timers

+ FreeRTOS timer AP:
- TimerCreate
- TimersStart
- TimerStop

- etc

Mock()'ing Timers

//mock timers external API.
//Used by tests to control time in the timer subsystem

#include <chrono>
namespace mock timers {

//Init () - prepare internal data structures
volid Init();

//Destroy () - destroy everything (all mock timers, etc)
volid Destroy();

//MoveTimeForward() - move time, firing any timers
// that would have expired during this timeframe
vold MoveTimeForward(std::chrono::milliseconds ms);

Mock()'ing Timers continued

AHh

Test Code and Test Framework

Tests

Firmware Under
Test

Controls Time via:

MoveTimeForward()
Creates, Starts, Stops, Deletes

Receives Events From

FreeRTOS Timers
API

mock_timers

—xample test showing mock timer usage

TEST (AppStartupPktTests,
StartupPktSentWithoutAckWillRetryAfterl10Seconds) {

// <<SNIP other setup code where Startup Pkt was already sent once>>

mock () .expectOneCall ("CellMgrSendStartupPkt") ;
mock () .1ignoreOtherCalls () ;

//after 10 seconds, confirm Startup Pkt is sent again
mock timers::MoveTimeForward (std::chrono::milliseconds (1000 * 10));

PROCESS APP QUEUE () ;

mock () .checkExpectations();

And where does this

take us?

Green Lights! Oh the Courage!

4 Search &3 Progress ¢ Type Hierarchy Cif C/C++ Unit 52 = H

:-‘
.';-] v

=~

gt G| @ =

Finished after 2.091 seconds

Runs: 201 BEmors 0 BFailures: 0 [

|l

> Eit] NvmBaseConfigTests (0.255 s) A | 1% Messages (X}l W6

b Ej NvmCallStatusTests (0.056 s)

D E] NvmCrashDataTests (0,128)

> ftl NvmGnssAssistDataTests (0.106 s)

D E] NvmGnssReceiverStateTests (0.144)

5> Fe] NvmMixedUseTests (0.011 5)

> Et] NvmShutdownPktTests (0.053 s)

D E] NvmStartupReasonTests (0.051 s)

> Ee] NvmTrackingPktTests (0.203 s)

> Et] NvmWearlevelingHelperTests (0.003 s) v

- 332 Tests with 40718 Checks

How can you start”

- Grenning: “How to start - Write
a test!”

- Any questions before the
online session??

DoJjo Exercise

Mailbox Base Station

Door Open or Door Closed g

OK” or “ERROR
‘v_, it Sniedani S S NN AR A N

-

- http://cyber-dojo.org

- G2482D

A tions?
Th an k yO U ! mgﬁtﬂ;\?vzggjemountainsoftware.com

mailto:matthew@covemountainsoftware.com

