
TDD and embedded software Matthew Eshleman

covemountainsoftware.com

Courage!

http://covemountainsoftware.com

Background - Matthew Eshleman

• 15+ years of embedded software development,
architecture, management, and project planning

• Delivered 30+ products with many more derivative
projects. Millions of people have used my code. No one
has threatened me yet (except one guy in marketing.)

• Recently: leading a safety and quality focused firmware
project using TDD methodologies.

• Learn more: http://covemountainsoftware.com/consulting

http://covemountainsoftware.com/consulting

Background - inspiration

• First conceptual exposure to TDD was about 10 years
ago at a conference. The speaker stated: “Test driven
development gives you COURAGE.” That comment went
straight to my core. I got it.

• Last year: read the book “Test Driven Development for
Embedded C” by James Grenning, providing further
motivation.

Recently…

• Leading firmware development
for splitsecnd’s crash detection
and emergency response
device.

• Test Driven Development - a
must for a device intended to
help people in emergency
situations.

• Today: overview of TDD and
lessons learned.

What is TDD? (Test Driven Development)

• Write tests before writing production/target code!

• Elecia and Grenning in http://embedded.fm/
episodes/109:

• “Transform your debug time into TDD time”

• Grenning: TDD vs “Debug Later
Programming” (DLP)

http://embedded.fm/episodes/109:

Benefits of TDD

• Functionality is tested without hardware

• Test code without backends/servers

• Error cases that are difficult or nearly impossible to test in the real
world can be tested in the test project/framework.

• Example: DNS failure. Happens, but…

• The tests act as a supplement or even replace specifications

• Tests supplement or replace code documentation

• Courage to refactor, rework, and rapidly iterate.

Test Driven Development work flow

• Write a test - It will not compile, this is clearly a “fail”.

• Fix headers. Add some shell code. Build, compile, link.

• Run Tests. New tests should fail.

• Develop code until it passes the test.

• Refactor.

• One Behavior At a time.

• Keep Tests fast. Encourages their use.

TDD needs a good Test Framework

• Many different Frameworks

• CppUTest (C++)

• Today’s focus, very C and C++ friendly, useful for embedded

• Unity (C code only)

• Google test (C++)

• See more: http://accu.org/index.php/journals/1326

http://accu.org/index.php/journals/1326

Platform, cross compile, etc

• Test projects

• Generally run on a PC

• Drawback: Assembly optimized code.

• Consider your test environment.

• Example, 32bit vs 64bit host OS and compiler, etc.

• Very likely need multiple projects due to C/C++ linker limitations

• Speed: keep the tests as fast as possible.

• Behavioral Driven versus “unit test” driven

Firmware Under Test

Example highlevel project/build setup

App Layer

Service Layer

HW Layer

Projects (compiled outputs)
• App Test Project

• Links to target App Layer code
• Service Layer mock() code
• App Layer Test code
• Target: PC test app

• Service Layer Test Project
• Links to Service Layer code
• HW Layer mock() code
• Service Layer Test code
• Target: PC test app

• Firmware project
• Target: cross-compiled for actual

target

Example Target
Firmware Architecture

Example Build or
Project Setup

Mocks!

• A “mock” module provides the same API or interface as
real code, enabling the test environment to setup,
control, and inspect the mock while testing code that
requires the module being mocked.

• In CppUTest a mock’ed function might look like this:

bool BatteryIsOk() {
 mock().actualCall(“BatteryIsOk”);
 return (bool) mock().returnIntValueOrDefault((int)true);
}

What does a test look like?

TEST(CrashDetectionTests, SampleCrashDataInducesCrashEvent) {

 // <<SNIP>> crash callback setup

 OpenTestFile(“data/crash_accel_data.txt");

 // Inject Data into mock 1 sample at a time
 AccelData_t *sample;
 while ((sample = GetNextSample()) != nullptr) {
 CrashDetectionInjectSample(sample);
 // Speed up test by exiting on Crash Callback
 if (bCallBackCalled) {
 break;
 }
 }

 CloseTestFile();

 //Check to make sure the crash detected Callback was called
 CHECK(bCallBackCalled);
}

Another example test showing mock() usage

TEST(AppButtonTests, EightSecondButtonPressAndHoldResetsMicrocontroller) {

 // <<SNIP>> remove minor setup code

 //we are about to send the 8 second button hold event.
 //we expect a reset to be requested

 mock().expectOneCall("NVIC_SystemReset");
 mock().ignoreOtherCalls();

 //send the 8 second hold event
 mock_btn_mgr::GetEightSecHoldHandler()(BTNMGR_HOLD_8_SECS);
 PROCESS_APP_QUEUE();

 mock().checkExpectations();
}

Lessons Learned

Lessons: Don’t be so strict!

• Don’t be afraid to punch through and reveal “internals”
when necessary.

• Example: Test an internal statemachine that would
typically be static/private code.

Lessons Learned: Threads

• Don’t test threads, test the code that runs in a thread.

• Why?

• Threading behavior is difficult or impossible to test
cross platform

• Threads are typically all about blocking: blocking on
semaphores, queues, timers, etc. Blocking slows
down the test projects

Lesson: Threads continued

Module Under Test
Thread Init/Startup

Code that
does stuff

TDD this code!

Skip TDD on this code

Example thread + queue + statemachine
void AppTask(void*) {
 AppStatemachine* statemachine = new AppStatemachine();
 statemachine->Init();
 while (1) {
 AppProcessOneQueueItem(statemachine, true);
 }
}

bool AppProcessOneQueueItem(AppStatemachine* sm, bool wait) {
 AppQueueItem msg;
 if (QueueRx(m_q, &msg, ((wait == false) ? 0 : MAX))) {
 sm->ProcessEvent(msg);
 return true;
 }
 return false;
}

Not Tested

Accessible to TDD environment

#define PROCESS_APP_QUEUE() do { while (AppProcessOneQueueItem(m_under_test, false)) {} } while(0)

Example Macro in TDD projects

Lessons: Time

• “Time” and embedded often
go hand and hand.

• For Today:

• Timers: periodic, one-shot,
etc

• Other:

• Current Time (timestamps,
calendars, etc)

• “Real time”
responsiveness

Time: RTOS Timers

• FreeRTOS timer API:

• TimerCreate

• TimerStart

• TimerStop

• etc

Mock()’ing Timers

//mock timers external API.
//Used by tests to control time in the timer subsystem

#include <chrono>
namespace mock_timers {

 //Init() - prepare internal data structures
 void Init();

 //Destroy() - destroy everything (all mock timers, etc)
 void Destroy();

 //MoveTimeForward() - move time, firing any timers
 // that would have expired during this timeframe
 void MoveTimeForward(std::chrono::milliseconds ms);

}

Mock()’ing Timers continued

Example test showing mock timer usage

TEST(AppStartupPktTests,
 StartupPktSentWithoutAckWillRetryAfter10Seconds) {

 // <<SNIP other setup code where Startup Pkt was already sent once>>

 mock().expectOneCall("CellMgrSendStartupPkt");
 mock().ignoreOtherCalls();

 //after 10 seconds, confirm Startup Pkt is sent again
 mock_timers::MoveTimeForward(std::chrono::milliseconds(1000 * 10));
 PROCESS_APP_QUEUE();

 mock().checkExpectations();
}

And where does this
take us?

Green Lights! Oh the Courage!

• 332 Tests with 40718 Checks

How can you start?

• Grenning: “How to start - Write
a test!”

• Any questions before the
online session??

Dojo Exercise

• http://cyber-dojo.org

• C2482D

Door Open or Door Closed

“OK” or “ERROR”

Mailbox Base Station

Thank you! Any questions?
matthew@covemountainsoftware.com

mailto:matthew@covemountainsoftware.com

